Epigenetic Inactivation and Subsequent Heterochromatinization of a Centromere Stabilize Dicentric Chromosomes
نویسندگان
چکیده
BACKGROUND The kinetochore is a multiprotein complex that forms on a chromosomal locus designated as the centromere, which links the chromosome to the spindle during mitosis and meiosis. Most eukaryotes, with the exception of holocentric species, have a single distinct centromere per chromosome, and the presence of multiple centromeres on a single chromosome is predicted to cause breakage and/or loss of that chromosome. However, some stably maintained non-Robertsonian translocated chromosomes have been reported, suggesting that the excessive centromeres are inactivated by an as yet undetermined mechanism. RESULTS We have developed systems to generate dicentric chromosomes containing two centromeres by fusing two chromosomes in fission yeast. Although the majority of cells harboring the artificial dicentric chromosome are arrested with elongated cell morphology in a manner dependent on the DNA structure checkpoint genes, a portion of the cells survive by converting the dicentric chromosome into a stable functional monocentric chromosome; either centromere was inactivated epigenetically or by DNA rearrangement. Mutations compromising kinetochore formation increased the frequency of epigenetic centromere inactivation. The inactivated centromere is occupied by heterochromatin and frequently reactivated in heterochromatin- or histone deacetylase-deficient mutants. CONCLUSIONS Chromosomes with multiple centromeres are stabilized by epigenetic centromere inactivation, which is initiated by kinetochore disassembly. Consequent heterochromatinization and histone deacetylation expanding from pericentric repeats to the central domain prevent reactivation of the inactivated centromere.
منابع مشابه
Switching the centromeres on and off: epigenetic chromatin alterations provide plasticity in centromere activity stabilizing aberrant dicentric chromosomes.
The kinetochore, which forms on a specific chromosomal locus called the centromere, mediates interactions between the chromosome and the spindle during mitosis and meiosis. Abnormal chromosome rearrangements and/or neocentromere formation can cause the presence of multiple centromeres on a single chromosome, which results in chromosome breakage or cell cycle arrest. Analyses of artificial dicen...
متن کاملTelomere Disruption Results in Non-Random Formation of De Novo Dicentric Chromosomes Involving Acrocentric Human Chromosomes
Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since ther...
متن کاملEpigenomics of centromere assembly and function.
The centromere is a complex chromosomal locus where the kinetochore is formed and microtubules attach during cell division. Centromere identity involves both genomic and sequence-independent (epigenetic) mechanisms. Current models for how centromeres are formed and, conversely, turned off have emerged from studies of unusual or engineered chromosomes, such as neocentromeres, artificial chromoso...
متن کاملReactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize.
Stable maize (Zea mays) chromosomes were recovered from an unstable dicentric containing large and small versions of the B chromosome centromere. In the stable chromosome, the smaller centromere had become inactivated. This inactive centromere can be inherited from one generation to the next attached to the active version and loses all known cytological and molecular properties of active centro...
متن کاملHigh frequency of centromere inactivation resulting in stable dicentric chromosomes of maize.
Somatic chromosome spreads from maize (Zea mays L.) plants containing B-A translocation chromosomes undergoing the chromosome type breakage-fusion-bridge cycle were examined by FISH. The size and type of extra chromosomes varied among cells of the same individual. A collection of minichromosomes derived from the chromosome type breakage-fusion-bridge cycle was examined for the presence of stabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 22 شماره
صفحات -
تاریخ انتشار 2012